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RETINAL DISORDERS
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Abstract

Background Post-translational protein modification by lipid
peroxidation products or glycation is a feature of aging as well
as pathologic processes in postmitotic cells at the ocular
fundus exposed to an oxidative environment. The accumula-
tion of modified proteins such as those found in lipofuscin and
advanced glycation end products (AGEs) contribute greatly to
the fundus auto-fluorescence. The distinct fluorescence
spectra of lipofuscin and AGE enable their differentiation in
multispectral fundus fluorescence imaging.

Method A dual-centre consecutive case series of 78 pseudo-
phacic patients is reported. Digital colour fundus photographs
as well as auto-fluorescence images were taken from 33
patients with age related macular degeneration (AMD), 13
patients with diabetic retinopathy (RD), or from 32 cases
without pathologic findings (controls). Fluorescence was
excited at 475-515 nm or 476604 nm and recorded in the
emission bands 530-675 nm or 675-715 nm, respectively.
Fluorescence images excited at 475-515 nm were taken by a
colour CCD-camera (colour-fluorescence imaging) enabling
the separate recording of green and red fluorescence. The ratio
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of green versus red fluorescence was calculated within a
representative region of each image.

Results The 530—675 nm auto-fluorescence in AMD
patients was dominated by the red emission (green vs. red
ratio, g/r=0.861). In comparison, the fluorescence of the
diabetics was green-shifted (g/r=0.946; controls: g/r=
0.869). Atrophic areas (geographic atrophy, laser scars)
showed massive hypo-fluorescence in both emission bands.
Hyper-fluorescent drusen and exudates, unobtrusive in the
colour fundus images as well as in the fluorescence images
with emission >667 nm, showed an impressive green-shift
in the colour-fluorescence image.

Conclusions Lipofuscin is the dominant fluorophore at
long wavelengths (>675 nm or red channel of the colour
fluorescence image). In the green spectral region, we found
an additional emission of collagen and elastin (optic disc,
sclera) as well as deposits in drusen and exudates. The
green shift of the auto-fluorescence in RD may be a hint of
increased AGE concentrations.
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Introduction

Ocular fundus autofluorescence imaging has gained a
growing interest in recent years [3, 5, 6, 10, 17, 18, 39,
40, 47-52]. Intrinsic tissue fluorescence was found to arise
from posttranslationally modified proteins, lipoproteins,
and nondegradable metabolic waste products as well as
from cofactors of the cellular energy metabolism such as
NADH and FAD. Thus, alterations of the tissue fluores-
cence may be an early indicator for ageing and disease on a

@ Springer



106

Graefes Arch Clin Exp Ophthalmol (2008) 246:105-114

molecular level. This especially holds for the postmitotic
cells of the retina and the retinal pigment epithelium (RPE)
[22, 41]. Therefore, fluorescence imaging may be helpful in
the diagnostics of diseases such as age-related macular
degeneration (AMD) as well as diabetic retinopathy. More
precise diagnostics in combination with new and available
medication may lead to a better treatment of patients with
macular diseases.

Several studies using fluorescence imaging by the Heidel-
berg retina angiograph (HRA), have focussed on the
observation of fundus autofluorescence (AF) in the junctional
zone of geographic atrophy (GA) in AMD patients. Correla-
tions have been found between areas of increased AF and the
progress of GA [28] as well as the loss of retinal sensitivity
[29, 30]. These observations support the hypothesis that
lipofuscin, which accumulates in the lysosomal compartment
of the RPE cells and is known to be fluorescent [6, 11],
interferes with the visual function and, finally, triggers
apoptosis [14, 41-43, 46]. However, different fluorophores
with different functions in the cells or adverse effects to the
cells may contribute to the fluorescence. These may be
oxidized poly-unsaturated fatty acids from phagozytosed rod
outer segments [22], adducts of their byproducts to proteins
[31], glycosylated proteins [45], Schiff base products of all-
trans-retinal and ethanolamine as well as their epoxids [26,
43] or furanoids [9], and FAD. Although the age pigment
lipofuscin (which itself is a mixture of different compounds)
is considered to be the strongest fluorophore at the ocular
fundus, all the other substances mentioned above can not be
ruled out and will contribute to the fluorescence. In 1995,
Arend et al. [1] observed a fluorescence of drusen at shorter
wavelengths than that of lipofuscin. In atrophic lesions, they
found an emission maximum at 520 nm due to collagen
fluorescence. Solbach et al. [39] and Staudt et al. [44]
discussed a fluorescence of dursen and other intra- and extra-
cellular compartments, also not originating from lipofuscin.
Furthermore, fluorescence [13, 14] is shown in advanced
glycation end products (AGEs), which are formed by the
nonenzymatic Maillard-reaction from proteins and glucose,
particularly under diabetic conditions [45], and was also
found in AMD [20, 31], particularly when associated with
drusen [53], and may be regarded as a general feature of
aging [25].

Thus, native fluorescence of the ocular fundus may be
related to various pathologic processes which may be
differentiated if we succeed in the discrimination of the
fluorophores. Fluorophores may differ in their excitation
and emission spectra as well as in their lifetimes.
Fluorescence lifetime imaging of the fundus, though
technically challenging, is under development [32, 35],
and initial clinical investigations have been published [33,
34, 36]. Fluorescence spectra were measured in vivo by
Delori et al. [5, 6]. However, their instrumentation does not
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provide an autoflourescence image. This was the incentive
to develop a fundus fluorescence imaging technique with
video resolution providing two spectral channels [13]
referred to as colour AF. In contrast to other imaging
studies describing the lateral pattern of AF [2, 3, 10, 18,
23], this technique may contribute spectral information and,
thus, give hints to the chemistry of the fluorescence. Here,
we present the initial results of colour AF, HRA AF
imaging, as well as far red AF [40] obtained from
consecutive case series of patients recruited at the Depart-
ments of Ophthalmology at the Universities of Regensburg
and Jena, suffering from AMD or diabetic retinopathy,
respectively. Persons without ocular fundus pathologies
served as a control group.

Materials and methods

In two study centres a total of 84 pseudophacic patients were
examined. Thirty-nine patients (mean age 78.9+6.4 years)
were suffering from AMD. Inclusion criteria were an age of
60 years or older and AMD diagnosed according to the
international classification and grading system [4]. Thirteen
patients (mean age 68.6+£6.1 years) were diagnosed with
diabetic retinopathy according to ETDRS report number 10
[12]. The 32 persons in the control group (mean age 61.0+
17.8 years) did not show any pathologies at the fundus. All
patients gave informed consent to the study which followed
the tenets of the Declaration of Helsinki and the guidelines of
a local ethics committee.

Fundus AF images were acquired using three different
techniques described in detail elsewhere [13, 16, 40].
Briefly, HRA AF imaging (Heidelberg Engineering, Dos-
ssenheim, Germany) used the 488 nm argon laser line for
fluorescence excitation. Fluorescence emission was ob-
served at wavelengths greater than 500 nm. For AF imaging
with the Funduscamera FF 450 (Carl Zeiss Meditec, Jena,
Germany) different filter combinations were used (for
review of excitation and emission wavelengths of the
different imaging techniques see Table 1). First, the
fluorescence was excited with a broadband filter 476—604
nm and recorded the emission in the far red spectral region
(675-715 nm) according to Spaide et al. [40] (far red AF).
A digital 12 bit CCD-camera F-view (Soft Imaging
Systems, Miinster, Germany) was used for image acquisi-
tion. Second, the filters used were those for fluorescein
angiography, with which the FF 450 fundus camera was
equipped (excitation: 475-515 nm, emission >530 nm).
However, the AF images were recorded with a colour 3-
CCD camera Hitachi HV-C20A (Hitachi, Tokyo, Japan) or
Panasonic 555E (Panasonic, Secaucus, NJ, USA) [13].
Thus, we obtained colour AF images with a green (530—
570 nm) and a red (570—675 nm) channel. Although this is
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Table 1 Excitation and emission wavelengths of HRA AF, far red
AF, and colour AF

Wavelength/method Excitation Emission
HRA AF 488 nm >500 nm
Far red AF 476-604 nm 675-715 nm
Colour AF 475-515 nm 530-570 nm
570-675 nm

a very raw spectral separation, it allows detecting spectral
differences within an image. These were highlighted by the
pixel by pixel calculation of the ratio of the intensity
recorded in both channels. Averaging of that ratio over a
representative area of the image provided a general
estimation parameter of the fluorescence spectra. That
average over a 70x70 pixel area temporal to the macula
and apart from pathologic lesions and retinal vessels was
calculated from each colour AF image. Statistical analysis
included the calculation of the Pearson correlation coeffi-
cient as a measure of the linear association between the
patient’s age and the green vs. red fluorescence intensity
ratio as well as students t-test of the mean ratios of the three
patient groups. The SPSS software (version 13.0.1, SPSS
Inc., Chicago, IL, USA) was used for statistics.
Additionally, digital colour fundus photographs were
recorded. Fluorescein angiography was performed if indicat-
ed. The in vivo investigations were parallelled by fluorescence
microscopy at histologic sections of choroid and RPE from a

Fig. 1 Normal fundus (control
group), age 72 years. a Fundus
photograph. b Colour AF. ¢
Green vs. red ratio from b. d Far
red AF

donor eye of an AMD patient. These cryosections were a gift
from Dr. Gaillard from Northern Illinois University at
DeKalb. Fluorescence micrographs were obtained using FITC
filters (excitation: 450490 nm, emission: >515 nm) with an
Axioplan microscope (Carl Zeiss, Jena, Germany).

Results

Figure 1 shows images of a healthy 72-year-old subject
from the control group. The colour AF image in Fig. 1b
demonstrates a homogeneous orange fluorescence all over
the fundus with the exception of the optic disc and the
retinal vessels. As in all colour AF images, the fluorescence
of the optic disc is greenish, whereas the vessels appear in
dark red. The green versus red ratio image in Fig. lc,
representing shorter wavelength fluorescence as higher gray
scale values and longer wavelengths as lower gray scale
values irrespective of the absolute fluorescence intensity,
demonstrates the homogeneity of the fluorescence. The
decrease of the fluorescence in the macula (Fig. 1b,d) is not
seen in the ratio image since it results from the absorption
of the excitation light by the macular pigment. Diminished
excitation, however, decreases the fluorescence emission
intensity but leaves the emission spectrum unchanged. In
the far red fluorescence image in Fig. 1d, the optic disc
appeared dark. The green fluorophore does not emit at 675—
715 nm.

The ratios of the fluorescence intensities in the green and
red channels, calculated from the colour AF images recorded
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in Jena, versus the patient’s age are shown in Fig. 2. The
images from the Regensburg study arm were not suitable
for quantitative analysis because of image compression. For
the control group, Fig. 2 shows a slight increase of the
green vs. red fluorescence (r=0.404) with age which,
however, was not significant (p=0.108). The AMD patients
showed a steeper, but also not significant, increase of the
ratio with age (r=0.662, p=0.152). There was no correla-
tion of the green vs. red fluorescence ratio with age in the
diabetic group (r=0.196). Often, the fundus AF of diabetic
patients appeared green-shifted (compare Figs. 1b and 7b).
Consequently, the average of the green vs. red ratio over all
diabetics (0.946+0.047) was slightly higher than that of the
controls (0.869+0.054) and the AMD patients (0.861+
0.054). This difference, however, was not significant (p=
0.212 and p=0.304, respectively).

Besides those general spectral features of AF images,
different excitation- and emission wavelengths reveal differ-
ent symptoms of AMD or diabetic retinopathy, respectively.
Figure 3 shows images of an AMD patient (74 years) with
minimal classical choroidal neovascularisation (CNV)
demonstrated by fluorescein angiography (Fig. 3b). The
HRA-AF may be assigned to the minimal change pattern
according to the international classification [3]. Addition-
ally, in the colour AF drusen may be recognised which are
not seen in the HRA image (see arrows) and, thus, are not
highlighted by hyper-fluorescence but by a spectral shift
towards shorter wavelengths. This was found to be a typical
feature of hyperfluorescent drusen and sometimes even of
nonfluorescent drusen.

The condition of a 73-year-old patient after successful
photodynamic therapy (PDT) of the CNV is documented in
Fig. 4. The fluorescein angiography (Fig. 4b) shows a
nonperfused central area and, thus, the closure of the CNV.

HRA AF (Fig. 4c) demonstrates an annular hyper-fluorescence
at the margin of the PDT area. The colour AF image shows a
lipofuscin-like orange fluorescence of this annulus. Two
haemorrhages are clearly seen nasal and superior to the laser
lesion. The areas appearing hypofluorescent in the HRA AF
image, however, exhibit green fluorescence in the colour AF
image. This is even more pronounced in fibrinous scars
secondary to AMD (Fig. 5d). As the case of a 74-year-old
patient demonstrates, this fluorescence is not seen in the HRA
AF image (Fig. 5¢).

A case of geographic atrophy (in a 71-year-old) is shown
in Fig. 6. The atrophic zone is characterised by a decreased
fluorescence in the HRA AF as well as in the colour AF
image. The colour AF, however, demonstrates a remaining
green fluorescence in the atrophy. Interestingly, areas of
recent atrophy progression (see arrows) are circumvented
by a green-shift of the AF.

The images in Fig. 7 show findings in a 64-year-old
patient suffering from diabetic retinopathy. The overall
colour AF (Fig. 7b) appears more greenish than that of the
AMD patients and controls. The atrophic area secondary to
laser photocoagulation is hypofluorescent in the far red AF
image (Fig. 7d) but, again, shows a remaining green
fluorescence in the colour AF. Hard exudates are seen as
hyperfluorescent spots. The green vs. red ratio image (Fig. 7¢)
demonstrates a spectral shift towards shorter wavelengths for
those exudates.

Fluorescence micrographs of the RPE-choroid complex
from the donor eye of an AMD patient (Fig. 8) revealed
two strongly fluorescent structures: the RPE and Bruch’s
membrane. While the RPE showed a golden fluorescence,
the emission of Bruch’s membrane was green. Additional to
the overall thickening of Bruch’s membrane (Fig. 8a), basal
laminar deposits (Fig. 8b) were also found to be hyper-
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Fig. 3 AMD patient (74 years)
with minimal classical choroidal
neovascularisation. a Fundus
photograph. b Fluorescein angi-
ography. ¢ HRA-AF. d Colour
AF, soft drusen with green-
shifted AF (arrows)

fluorescent. Drusen exhibited different fluorescence pat-  Discussion

terns: Fig. 8c demonstrates a nearly nonfluorescent druse

whereas other drusen showed granular green hyperfluor-  The data presented here show that different physiological as
escence (Fig. 8d). well as pathological features may be highlighted in fundus

Fig. 4 AMD patient (73 years)
after PDT of the CNV. a Fundus
photograph. b Fluorescein angi-
ography. ¢ HRA-AF. d Colour
AF
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Fig. 5 Patient (74 years) with a
central scar secondary to AMD.
a Fundus photograph. b Fluo-
rescein angiography. ¢ HRA-AF.
d Colour AF

AF images by the choice of different wavelength ranges for
excitation and emission. Generally speaking, the far red
fluorescence may be solely attributed to lipofuscin. Spec-
trally shorter emitting fluorophores are not seen in the
emission range 675-717 nm applied here. The HRA AF

Fig. 6 Patient with geographic
atrophy (71 years). Areas of
atrophy progression (arrows)
showing green-shift of the col-
our AF. a Fundus photograph. b
HRA-AF. ¢ Colour AF. d Green
vs. red ratio from ¢

@ Springer

da

also predominantly represents lipofuscin fluorescence since
this is the principal fluorophore at the ocular fundus. The
application of colour AF, however, reveals the existence of
additional fluorophores. Most noticeable in the healthy
controls is the green fluorescence of the optic disc. Since
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Fig. 7 64-year-old patient
suffering from diabetic
retinopathy. a Fundus photo-
graph. b Colour AF. Arrows
(in b and ¢) are hard exsudates.
¢ Green vs. red ratio from b.

d Far red AF

the total exclusion of reflected light from the fluorescence
measurement was ensured in preceding experiments [13],
this fluorescence has to be attributed to collagen. The
emission maximum of collagens was found at 500 nm upon

Fig. 8 AF micrographs of RPE
and choroid of a donor eye from
an AMD patient. a Normal
fundus. b Thickened Bruch’s
membrane with basal-laminar
deposits. ¢ Druse. d Druse filled
with green fluorescent material

excitation at 446 nm [33, 37]. The fluorescence of the optic
disc is not seen in the HRA AF images. Because of the
excavation of the papilla nervi optici, this is out of focus of
the confocal scanning system in retinal imaging and, thus,

@ Springer



112

Graefes Arch Clin Exp Ophthalmol (2008) 246:105-114

the detection of its fluorescence is suppressed by the
confocal field diaphragm. There is no AF seen at the optic
disc in the far red images because of the lack of lipofuscin.

The reddish appearance of retinal vessels in the colour
AF images results from the spectral transmission of the
haemoglobin. Because this is much higher for red than for
green light, the green fluorescence emission from behind
the vessels is absorbed by haemoglobin while the red one
may transmit the vessels.

The general orange fundus AF strongly resembles that of
the RPE in a histological cross section of RPE and choroid
from an AMD patient (Fig. 8). Hence, in fundus AF
imaging we primarily observe the golden fluorescence of
the RPE rather than the green fluorescence of Bruch’s
membrane (Fig. 8), which is covered by RPE lipofuscin
fluorescence in the en face observation in vivo. The
dominance of one fluorophore in the healthy controls is
emphasised further by the homogeneity of the ratio of green
vs. red fluorescence emission (Fig. 1c). The fluorescence
emission itself is depressed in the fovea due to an
attenuation of the excitation light by the macular pigment
(Fig. 1b,c); however, there was no alteration of the spectral
composition of the emission. The increase of the ratio of the
green versus red fluorescence with age in the control group
and, more pronounced, in AMD patients may reflect either
a thickening and structural change of Bruch’s membrane or
a decrease of the lipofuscin content of the RPE [8].

The colour AF images of diabetic patients were often
found to be green-shifted. Although the green vs. red
fluorescence intensity ratio was not significantly different in
diabetic patients versus nondiabetics in our study popula-
tion, the shift was highly visible in most of the cases. There
were some green-shifted hyperpigmentations showing
coincidence with hard exsudates in the fundus photograph
(Fig. 7), but the general appearance of the green fluores-
cence was not a focal, but a global one. Thus, this green-
shift may indicate systemic processes rather than local
pathologies of the eye. One explanation may be the general
glycation of proteins in diabetics [45]. Advanced glycation
end products showed a fluorescence maximum at 495 nm
upon excitation at 446 nm [33, 37]. Thus, the observed
green-shift may indicate enhanced levels of AGEs at the
fundus of diabetic patients. On the other hand, the increase
of the green vs. red ratio with age in the controls and, more
pronounced, in AMD patients (Fig. 2) also may result from
a thickening of Bruch’s membrane [24]. This membrane
emits green fluorescence light upon blue light excitation
(Fig. 8) and its thickness increases with age [27]. Collagen
as well as AGEs may contribute to the green fluorescence,
and further investigations are necessary in order to elucidate
the role of either fluorophore. Here, fluorescence lifetime
imaging, which can be applied in vivo [33, 34], may be
helpful.
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The AF of drusen is a matter of debate since Arend et al.
[1] found their fluorescence to be green-shifted in some
cases. This is consistent with our in vivo (Fig. 3d) as well
as in vitro (Fig. 8d) findings. The accumulation of green
fluorescent material in drusen as well as in basal laminar
deposits (Fig. 8b) found here, confirms the observations of
Marmorstein et al. [24]. It may be attributed to protein
glycation. Handa et al. [15] and Ishibashi et al. [20]
demonstrated the abundance of pentosidine and carbox-
ymethyllysine, two of the most studied collagen AGE
products, in soft macular drusen as well as basal laminar
and linear deposits. Their possible role in the pathogenesis
of AMD was pointed out by these authors. Smith et al. [38]
found a remarkable co-localisation of drusen with focal
increased AF. They discussed their findings in the context
of lipofuscin accumulation in the RPE over large soft
drusen. Our results, however, suggest that hyperfluores-
cence at the site of drusen does not necessarily result from
the RPE lipofuscin but may be emitted by the drusen
themselves. Since this fluorescence is shifted towards
shorter wavelengths, the AF of drusen can be distinguished
from that of lipofuscin by colour AF. Besides hyper-
fluorescent drusen, Delori et al. [7] found drusen with an
annular fluorescence pattern. This pattern was not found in
our investigation possibly due to a much smaller lateral
resolution of our imaging technique. However, Delori’s
finding of a greater contrast of the annular pattern upon an
excitation at 550 nm (lipofuscin only) compared to 470 nm,
exciting different fluorophores, is consistent with the
differentiation of drusen- and lipofuscin-AF possible with
our technique.

A hyperpigmented annulus around a lesion secondary to
PDT in neovascular AMD (Fig. 4) was found in some but
not all of our patients. Since we did not take AF
photographs prior to PDT, we do not know whether that
annulus resulted from the treatment or already existed
before PDT as a feature of the CNV. From its orange
appearance in colour AF, however, we think that the
fluorescence results from an increased lipofuscin content
of the RPE. Alternatively, the fluorescence may arise from
melanin showing far red fluorescence [21]. Both phenom-
ena may be explained by the phagocytosis of melanin and
lipofuscin, released during PDT, by the RPE cells at the
margin of the PDT area. On the other hand, it may also
arise from nonproliferating RPE cells and, thus, may
indicate either just enhanced metabolic activity of the
RPE or a lipofuscin load which is critical to the cells. This
issue has to be addressed by further investigations. The
PDT lesion itself (Fig. 4) appeared hypofluorescent in the
HRA AF. In contrast, weak green fluorescence in and
around the lesion in colour AF possibly revealed a
beginning fibrinous process which may result in an AMD
scar as seen in Fig. 5. Here, the scar, which is hypofluor-
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escent in the HRA AF, showed green fluorescence,
obviously due to collagen and elastin, in colour AF.

Hyper-AF in the junctional zone of geographic atrophy was
first demonstrated by Holz et al. [18]. It is still a matter of
debate whether this hyperfluorescence is predictive for the
progression of the GA or not [19, 28, 29]. This question can
only be answered by extensive longitudinal studies. What we
see, however, from colour AF is a green-shift circumventing
regions of recent progression of the atrophic zone (Fig. 6).
Where this shift coincides with hyperfluorescence, it
possibly indicates an alteration of the composition of the
lipofuscin. Whether this has an impact on disease progres-
sion should be investigated in subsequent studies.

From the data presented here, we suggest that the spectral
resolution of the ocular fundus autofluorescence as in colour
AF may provide additional information on pathologic features
in AMD as well as in diabetic retinopathy. A further advantage
of this technique over HRA AF is the possibility of recording
the fluorescence image with a single flash of the fundus
camera. Thus, there is no need for image registration or
correction.

This study has several limitations. First, only pseudo-
phacic patients were included. In phacic eyes, the fluores-
cence of the lens may interfere with that of the fundus. This
is a disadvantage of colour AF compared to the HRA AF,
largely suppressing the lens fluorescence by confocal
imaging, and far red AF, excluding the lens fluorescence
by the choice of the excitation wavelength. However,
techniques to compensate for the lens AF are currently
under development. A second limitation of the study is that
it was cross-sectional. Thus, the data leave us with some
questions on the natural history of AMD or diabetic
retinopathy, which have to be addressed by subsequent
longitudinal investigations.

In conclusion, HRA AF as well as far red AF document the
lipofuscin distribution over the ocular fundus. The same AF
pattern is seen in the red channel of the colour AF. The green
channel adds information on fluorophores emitting between
530 and 570 nm. That may be collagen and AGEs. The
diagnostic merit of colour AF, however, has to be established
in detailed studies to be performed subsequently.
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